网站首页 | 网站地图

每日推荐
首页 > 思想理论 > 理论探索 > 正文

借力大数据强化网络舆情分析研判

核心提示: 云计算、物联网、4G网络等新技术的发展为大数据舆情分析模型的建立提供了有益帮助。基于云计算的舆情分析,能同时分析更多数据,揭露更多隐藏价值,使预测更准确,决策更合理。

新媒体时代,大数据技术方兴未艾,面对互联网上的海量信息,借力大数据强化网络舆情分析研判,有效预防突发事件发生,对舆情工作者亦是有益尝试。

预测是大数据舆情分析研判的核心

大数据的核心作用是预测,大数据舆情分析研判是舆情工作者通过收集分析互联网上关于社会热点或网民关注焦点事件的大量消息报道,发掘背后隐藏关系,进而预测事态发展趋势,为舆情事件处置提供决策参考。

预测不是预知,更非先知,大数据舆情分析研判也是通过对现有数据分析运算而推出结论,对事件发展趋势的预测与数据数量、质量和分析模型等密切相关。在舆情事件处置中,应树立依靠而非依赖数据的指导思想,避免数据独裁,这一点我们要有清醒认识。

数据是大数据舆情分析研判的基础

互联网上海量数据的存在是大数据舆情分析研判的基础,但是面对纷繁浩杂、真伪难辨的网络信息,需要舆情工作者秉持来源广泛、时效性强、数量大的原则收集筛选各类数据,客观反映事件真相。

数据来源要广泛。大数据舆情分析研判所需数据,不仅要来自官方舆论场还应包含民间舆论场,既要有正面赞扬更要有负面批评。网络舆情数据按网民参与度可分为消息数据和互动数据。消息是网上关于事件的各类报道,来源广泛、真假难辨,此类报道通常会将网民聚焦到事件本身,引发关注,是突发事件的“导火索”,也是分析事件起因的重要线索。互动数据是网民对社会热点事件情感意愿的体现,是社情民意的真实反映,是突发事件的“催化剂”,也是研判舆情发展趋势的基础,是舆情分析的核心,收集数据时,应特别关注贴吧、论坛、新闻跟帖、微博、微信等互动数据的采集。

数据时效性要强。现在每天互联网上的数据以GB甚至TB级规模增加,总量超乎想象,这就需要收集舆情数据时把握好数据的时效性。对于数据时效性,通常根据舆情事件的性质、规模、影响力等因素综合分析。

数据量足够大。现在网上各类消息满天飞,真伪难辨,错误的消息数据会严重影响舆情分析质量。辨别消息真伪的关键是看消息间逻辑关系是否合理,假消息通常与其他消息没有联系或联系不紧密,不能与之构成合理的消息链,这就要求舆情工作者应收集尽量多的数据,数量大到能多维度反映事件真相,内在逻辑关系能让假消息原形毕露。

上一页 1 2下一页
[责任编辑:焦杨]
标签: 大数据   网络舆情   舆情研判