英国财政部前顾问戴安娜·科伊尔在其2月份发表的文章《超越GDP——经济绩效的衡量方法缺失了什么》一文中指出,国民核算等官方经济数据有各种来源,但有关个人和企业的调查构成其骨干。向某些企业发送表格或者派遣调查人员搜集不同店铺提供的有关价格的信息,这些常规的调查方法几乎不可能在经济结构本身发生变化的时候保持不断的更新。举一个明显的例子:调查表实际上没有把网上购物计算在内,而网上价格很可能比较低。
哈佛大学访问学者冯煦明指出,传统经济统计数据有两个缺陷:一是滞后性,二是低频率。例如:各国消费者物价指数(CPI)的发布一般都存在滞后期,以我国为例,通常要等到下个月的9号左右才发布上月的CPI数据。
专家表示,在同样的价值需求下,人们可能更加关注某大型电商(如淘宝网)的销售数据,而不需要再关注“社会消费品零售额”的统计指标。在发布结果时,仅仅告诉别人一个结果(如全国GDP数据)是远远不够的,还需要通过可视化、交互等方式给予用户更加方便、高效的使用方式,提供更为详尽的“意义”信息。
2、“垃圾”数据如何重新发光?
阿里巴巴基于淘宝推出的网络零售价格指数(iSPI),以网络交易的实时数据为基础,反映食品、烟酒及用品、衣着等十个商品与服务类别的网络零售价格和交易量的变化趋势。该指数与官方CPI环比指数呈现联动关系,并在关键转折点呈一定领先态势,可以辅助洞悉通货膨胀、经济增长、居民消费等宏观经济指标。
“传统的经济统计在未来将大数据化。”冯煦明认为,以往生产统计更多地停留在行业层面,或局限于规模以上企业,而未来可能是针对所有企业;传统的消费统计主要基于抽样调查,而未来可能具体到每个家庭或个人;传统的价格统计中仅包含千种商品、涉及几万个调查销售网点,而今后可能是几万种商品、所有的在线销售商和大部分线下销售网点。随着大数据技术的成熟,“样本即总体”将成为趋势,抽样越来越不重要。
“相对于传统经济统计而言,大数据引发的变革主要表现在四个方面:更快、更准、更广、更细。”冯煦明说,这些特性有益于未来行业政策和宏观经济决策。
随着计算机和互联网的普及以及电子商务的发展,越来越多的经济行为被记录下来。随着大数据相关技术的成熟,公共部门和私人企业过去积累的大量“垃圾”数据有可能重新焕发光彩。比如用交通事故和犯罪数据指导警力布局、用消费和税收数据指导收入分配、用客流量数据指导铁路和民航调配、用互联网关键词传播数据进行流行病预防等等。
赵彦云认为,在大数据时代,政府可以在国家层面建立数据集中平台,统筹管理经济社会的各项数据,包括经济社会统计数据的空间化,覆盖社会生活的方方面面,可以基于服务业各个部门管理的行政记录、业务统计、监管信息,建设服务业统计核算的科学统计方法体系。
“统计分析不能就数据论数据,还要追根求源,深入分析引起数据变化背后的原因。要做到这一点,就要求我们既要注重宏观分析,也要注重微观分析。”国家统计局局长马建堂说。
传统的平均值指标,掩盖了地域和个体的具体发展趋势。例如,如果把失业率当成全国性问题来处理,肯定是错误的,因为随着地域、性别及教育程度变化,就业趋势会有很大差别。但这些问题没有一个体现在失业率上,通过失业率制定的政策一开始就走错了方向。
专家表示,这些先行指标对于小企业或个人来说作用甚微。个人决定现在是否创业或买房时,不应该去参考失业率或者国家住房数量。对于想开一家服装店或者餐馆的人来说,CPI往往没有任何参考价值。相反,企业家应该注意当地市场动态及本行业的趋势。在30年前,这类统计可能相当困难,而今天获取这些信息只是在电脑上花几个小时而已。在大数据时代,我们需要的是专门为政府、企业、社区和个人的特定需求而定制指标,这在现在成为可能。
